Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neurol Sci ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457084

RESUMO

OBJECTIVE: This study utilized a data-driven Bayesian model to automatically identify distinct latent disease factors represented by overlapping glucose metabolism patterns from 18F-Fluorodeoxyglucose PET (18F-FDG PET) to analyze heterogeneity among patients with TLE. METHODS: We employed unsupervised machine learning to estimate latent disease factors from 18F-FDG PET scans, representing whole-brain glucose metabolism patterns in seventy patients with TLE. We estimated the extent to which multiple distinct factors were expressed within each participant and analyzed their relevance to epilepsy burden, including seizure onset, duration, and frequency. Additionally, we established a predictive model for clinical prognosis and decision-making. RESULTS: We identified three latent disease factors: hypometabolism in the unilateral temporal lobe and hippocampus (factor 1), hypometabolism in bilateral prefrontal lobes (factor 2), and hypometabolism in bilateral temporal lobes (factor 3), variably co-expressed within each patient. Factor 3 demonstrated the strongest negative correlation with the age of onset and duration (r = - 0.33, - 0.38 respectively, P < 0.05). The supervised classifier, trained on latent disease factors for predicting patient-specific antiepileptic drug (AED) responses, achieved an area under the curve (AUC) of 0.655. For post-surgical seizure outcomes, the AUC was 0.857, and for clinical decision-making, it was 0.965. CONCLUSIONS: Decomposing 18F-FDG PET-based phenotypic heterogeneity facilitates individual-level predictions relevant to disease monitoring and personalized therapeutic strategies.

2.
Transl Psychiatry ; 14(1): 21, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199983

RESUMO

High suicide risk represents a serious problem in patients with major depressive disorder (MDD), yet treatment options that could safely and rapidly ameliorate suicidal ideation remain elusive. Here, we tested the feasibility and preliminary efficacy of the Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT) in reducing suicidal ideation in patients with MDD. Thirty-two MDD patients with moderate to severe suicidal ideation participated in the current study. Suicidal ideation and depression symptoms were assessed before and after 5 days of open-label SAINT. The neural pathways supporting rapid-acting antidepressant and suicide prevention effects were identified with dynamic causal modelling based on resting-state functional magnetic resonance imaging. We found that 5 days of SAINT effectively alleviated suicidal ideation in patients with MDD with a high response rate of 65.63%. Moreover, the response rates achieved 78.13% and 90.63% with 2 weeks and 4 weeks after SAINT, respectively. In addition, we found that the suicide prevention effects of SAINT were associated with the effective connectivity involving the insula and hippocampus, while the antidepressant effects were related to connections of the subgenual anterior cingulate cortex (sgACC). These results show that SAINT is a rapid-acting and effective way to reduce suicidal ideation. Our findings further suggest that distinct neural mechanisms may contribute to the rapid-acting effects on the relief of suicidal ideation and depression, respectively.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Ideação Suicida , Hipocampo , Imageamento por Ressonância Magnética , Antidepressivos/uso terapêutico
3.
Sci China Life Sci ; 67(1): 67-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864083

RESUMO

Chronic pain often develops severe mood changes such as depression. However, how chronic pain leads to depression remains elusive and the mechanisms determining individuals' responses to depression are largely unexplored. Here we found that depression-like behaviors could only be observed in 67.9% of mice with chronic neuropathic pain, leaving 32.1% of mice with depression resilience. We determined that the spike discharges of the ventral tegmental area (VTA)-projecting lateral habenula (LHb) glutamatergic (Glu) neurons were sequentially increased in sham, resilient and susceptible mice, which consequently inhibited VTA dopaminergic (DA) neurons through a LHbGlu-VTAGABA-VTADA circuit. Furthermore, the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner. Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain. Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.


Assuntos
Dor Crônica , Habenula , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Habenula/metabolismo , Depressão , Ácido gama-Aminobutírico/metabolismo
4.
Neuroimage Clin ; 41: 103556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38134741

RESUMO

It is posited that cognitive and affective dysfunction in patients with major depression disorder (MDD) may be caused by dysfunctional signal propagation in the brain. By leveraging dynamic causal modeling, we investigated large-scale directed signal propagation (effective connectivity) among distributed large-scale brain networks with 43 MDD patients and 56 healthy controls. The results revealed the existence of two mutual inhibitory systems: the anterior default mode network, auditory network, sensorimotor network, salience network and visual networks formed an "emotional" brain, while the posterior default mode network, central executive networks, cerebellum and dorsal attention network formed a "rational brain". These two networks exhibited excitatory intra-system connectivity and inhibitory inter-system connectivity. Patients were characterized by potentiated intra-system connections within the "emotional/sensory brain", as well as over-inhibition of the "rational brain" by the "emotional/sensory brain". The hierarchical architecture of the large-scale effective connectivity networks was then analyzed using a PageRank algorithm which revealed a shift of the controlling role of the "rational brain" to the "emotional/sensory brain" in the patients. These findings inform basic organization of distributed large-scale brain networks and furnish a better characterization of the neural mechanisms of depression, which may facilitate effective treatment.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Depressão , Vias Neurais/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
5.
Front Psychiatry ; 14: 1185471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383618

RESUMO

Major psychiatric disorders create a significant public health burden, and mental disorders such as major depressive disorder, bipolar disorder, and schizophrenia are major contributors to the national disease burden. The search for biomarkers has been a leading endeavor in the field of biological psychiatry in recent decades. And the application of cross-scale and multi-omics approaches combining genes and imaging in major psychiatric studies has facilitated the elucidation of gene-related pathogenesis and the exploration of potential biomarkers. In this article, we summarize the results of using combined transcriptomics and magnetic resonance imaging to understand structural and functional brain changes associated with major psychiatric disorders in the last decade, demonstrating the neurobiological mechanisms of genetically related structural and functional brain alterations in multiple directions, and providing new avenues for the development of quantifiable objective biomarkers, as well as clinical diagnostic and prognostic indicators.

6.
Front Psychiatry ; 14: 1163067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252157

RESUMO

Purpose: Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in improving depressive symptoms in MDD patients, but the intrinsic mechanism is still unclear. In this study, we investigated the influence of rTMS on brain gray matter volume for alleviating depressive symptoms in MDD patients using structural magnetic resonance imaging (sMRI) data. Methods: Patients with first episode, unmedicated patients with MDD (n = 26), and healthy controls (n = 31) were selected for this study. Depressive symptoms were assessed before and after treatment by using the HAMD-17 score. High-frequency rTMS treatment was conducted in patients with MDD over 15 days. The rTMS treatment target is located at the F3 point of the left dorsolateral prefrontal cortex. Structural magnetic resonance imaging (sMRI) data were collected before and after treatment to compare the changes in brain gray matter volume. Results: Before treatment, patients with MDD had significantly reduced gray matter volumes in the right fusiform gyrus, left and right inferior frontal gyrus (triangular part), left inferior frontal gyrus (orbital part), left parahippocampal gyrus, left thalamus, right precuneus, right calcarine fissure, and right median cingulate gyrus compared with healthy controls (P < 0.05). After rTMS treatment, significant growth in gray matter volume of the bilateral thalamus was observed in depressed patients (P < 0.05). Conclusion: Bilateral thalamic gray matter volumes were enlarged in the thalamus of MDD patients after rTMS treatment and may be the underlying neural mechanism for the treatment of rTMS on depression.

8.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 169-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35419632

RESUMO

Accumulating evidence suggests that the brain is highly dynamic; thus, investigation of brain dynamics especially in brain connectivity would provide crucial information that stationary functional connectivity could miss. This study investigated temporal expressions of spatial modes within the default mode network (DMN), salience network (SN) and cognitive control network (CCN) using a reliable data-driven co-activation pattern (CAP) analysis in two independent data sets. We found enhanced CAP-to-CAP transitions of the SN in patients with MDD. Results suggested enhanced flexibility of this network in the patients. By contrast, we also found reduced spatial consistency and persistence of the DMN in the patients, indicating reduced variability and stability in individuals with MDD. In addition, the patients were characterized by prominent activation of mPFC. Moreover, further correlation analysis revealed that persistence and transitions of RCCN were associated with the severity of depression. Our findings suggest that functional connectivity in the patients may not be simply attenuated or potentiated, but just alternating faster or slower among more complex patterns. The aberrant temporal-spatial complexity of intrinsic fluctuations reflects functional diaschisis of resting-state networks as characteristic of patients with MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Depressão , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico , Vias Neurais
9.
CNS Neurosci Ther ; 29 Suppl 1: 5-17, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36468448

RESUMO

INTRODUCTION: Gut microbial disturbance has been established as potential pathogenesis of mental disorders. However, the signatures and differences regarding patients with schizophrenia (SCH) or bipolar disorder (BD) in emerging adulthood as well as their subtypes have been poorly addressed. METHODS: In the present study, stool samples obtained from 63 emerging adult patients with schizophrenia (SCH), 50 with bipolar disorder (BD), and 40 healthy controls (HC) were analyzed by 16 S rRNA gene sequencing; psychiatric symptoms and psychological, social, and professional functioning were also assessed. RESULTS: We found that gut microbiota composition was remarkably changed in the patients with SCH and BD. Moreover, the distinct gut microbiome signatures and their potential function in bipolar depression (BP-D) and SCH with predominantly negative symptoms (SCH-N) as well as bipolar mania (BP-M) and SCH with predominantly positive symptoms (SCH-P) were also observed. Furthermore, we identified diagnostic potential biomarkers that can distinguish BD from HC (38 genera, AUC = 0.961), SCH from HC (32 genera, AUC = 0.962), and BD from Scheme (13 genera, AUC = 0.823). Potential diagnostic biomarkers that can distinguish BD-D from SCH-N (16 genera, AUC = 0.969) and BD-M from SCH-P (31 genera, AUC = 0.938) were also identified. CONCLUSION: This study provides further understanding of abnormal gut microbiome in emerging adulthood patients with SCH and BD and lay the potential foundation for the development of microbe-based clinical diagnosis for BD and SCH.


Assuntos
Transtorno Bipolar , Microbioma Gastrointestinal , Esquizofrenia , Adulto , Humanos , Transtorno Bipolar/diagnóstico , Biomarcadores
10.
Front Neurosci ; 16: 987248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523439

RESUMO

Introduction: Understanding the neurological basis of autism spectrum disorder (ASD) is important for the diagnosis and treatment of this mental disorder. Emerging evidence has suggested aberrant functional connectivity of large-scale brain networks in individuals with ASD. However, whether the effective connectivity which measures the causal interactions of these networks is also impaired in these patients remains unclear. Objects: The main purpose of this study was to investigate the effective connectivity of large-scale brain networks in patients with ASD during resting state. Materials and methods: The subjects were 42 autistic children and 127 age-matched normal children from the ABIDE II dataset. We investigated effective connectivity of 7 large-scale brain networks including visual network (VN), default mode network (DMN), cerebellum, sensorimotor network (SMN), auditory network (AN), salience network (SN), frontoparietal network (FPN), with spectral dynamic causality model (spDCM). Parametric empirical Bayesian (PEB) was used to perform second-level group analysis and furnished group commonalities and differences in effective connectivity. Furthermore, we analyzed the correlation between the strength of effective connectivity and patients' clinical characteristics. Results: For both groups, SMN acted like a hub network which demonstrated dense effective connectivity with other large-scale brain network. We also observed significant causal interactions within the "triple networks" system, including DMN, SN and FPN. Compared with healthy controls, children with ASD showed decreased effective connectivity among some large-scale brain networks. These brain networks included VN, DMN, cerebellum, SMN, and FPN. In addition, we also found significant negative correlation between the strength of the effective connectivity from right angular gyrus (ANG_R) of DMN to left precentral gyrus (PreCG_L) of SMN and ADOS-G or ADOS-2 module 4 stereotyped behaviors and restricted interest total (ADOS_G_STEREO_BEHAV) scores. Conclusion: Our research provides new evidence for the pathogenesis of children with ASD from the perspective of effective connections within and between large-scale brain networks. The attenuated effective connectivity of brain networks may be a clinical neurobiological feature of ASD. Changes in effective connectivity of brain network in children with ASD may provide useful information for the diagnosis and treatment of the disease.

11.
Medicina (Kaunas) ; 58(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363466

RESUMO

Background and Objectives: Lipidomics is a pivotal tool for investigating the pathogenesis of mental disorders. However, studies qualitatively and quantitatively analyzing peripheral lipids in adult patients with schizophrenia (SCZ) and major depressive disorder (MDD) are limited. Moreover, there are no studies comparing the lipid profiles in these patient populations. Materials and Method: Lipidomic data for plasma samples from sex- and age-matched patients with SCZ or MDD and healthy controls (HC) were obtained and analyzed by liquid chromatography-mass spectrometry (LC-MS). Results: We observed changes in lipid composition in patients with MDD and SCZ, with more significant alterations in those with SCZ. In addition, a potential diagnostic panel comprising 103 lipid species and another diagnostic panel comprising 111 lipid species could distinguish SCZ from HC (AUC = 0.953) or SCZ from MDD (AUC = 0.920) were identified, respectively. Conclusions: This study provides an increased understanding of dysfunctional lipid composition in the plasma of adult patients with SCZ or MDD, which may lay the foundation for identifying novel clinical diagnostic methods for these disorders.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Adulto , Humanos , Transtorno Depressivo Maior/diagnóstico , Esquizofrenia/diagnóstico , Lipidômica , Espectrometria de Massas , Lipídeos
14.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665141

RESUMO

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

15.
Front Neurosci ; 15: 697870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602966

RESUMO

Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. In this paper, we presented a comprehensive review about the previous studies since 2011, which applied machine learning methods to analyze the functional magnetic resonance imaging (fMRI) data of autistic individuals and the typical controls (TCs). The all-round process was covered, including feature construction from raw fMRI data, feature selection methods, machine learning methods, factors for high classification accuracy, and critical conclusions. Applying different machine learning methods and fMRI data acquired from different sites, classification accuracies were obtained ranging from 48.3% up to 97%, and informative brain regions and networks were located. Through thorough analysis, high classification accuracies were found to usually occur in the studies which involved task-based fMRI data, single dataset for some selection principle, effective feature selection methods, or advanced machine learning methods. Advanced deep learning together with the multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends especially in the recent 4 years. In the future, advanced feature selection and machine learning methods combined with multi-site dataset or easily operated task-based fMRI data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.

16.
Neuroscience ; 475: 93-102, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487819

RESUMO

Two different but interacting neural systems exist in the human brain: the task positive networks and task negative networks. One of the most important task positive networks is the central executive network (CEN), while the task negative network generally refers to the default mode network (DMN), which usually demonstrates task-induced deactivation. Although previous studies have clearly shown the association of both the CEN and DMN with major depressive disorder (MDD), how the causal interactions between these two networks change in depressed patients remains unclear. In the current study, 99 subjects (43 patients with MDD and 56 healthy controls) were recruited with their resting-state fMRI data collected. After data preprocessing, spectral dynamic causal modeling (spDCM) was used to investigate the causal interactions within and between the DMN and CEN. Group commonalities and differences in causal interaction patterns within and between the CEN and DMN in patients and controls were assessed by a parametric empirical Bayes (PEB) model. Both subject groups demonstrated significant effective connectivity between regions of the CEN and DMN. In particular, we detected inhibitory influences from the CEN to the DMN with node-level PEB analyses, which may help to explain the anticorrelations between these two networks consistently reported in previous studies. Compared with healthy controls, patients with MDD showed increased effective connectivity within the CEN and decreased connectivity from regions of the CEN to DMN, suggesting impaired control of the DMN by the CEN in these patients. These findings might provide new insights into the neural substrates of MDD.


Assuntos
Transtorno Depressivo Maior , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Rede de Modo Padrão , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
17.
Front Oncol ; 11: 704039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336691

RESUMO

Urinary bladder cancer (BCa) is a highly prevalent disease among aged males. Precise diagnosis of tumor phenotypes and recurrence risk is of vital importance in the clinical management of BCa. Although imaging modalities such as CT and multiparametric MRI have played an essential role in the noninvasive diagnosis and prognosis of BCa, radiomics has also shown great potential in the precise diagnosis of BCa and preoperative prediction of the recurrence risk. Radiomics-empowered image interpretation can amplify the differences in tumor heterogeneity between different phenotypes, i.e., high-grade vs. low-grade, early-stage vs. advanced-stage, and nonmuscle-invasive vs. muscle-invasive. With a multimodal radiomics strategy, the recurrence risk of BCa can be preoperatively predicted, providing critical information for the clinical decision making. We thus reviewed the rapid progress in the field of medical imaging empowered by the radiomics for decoding the phenotype and recurrence risk of BCa during the past 20 years, summarizing the entire pipeline of the radiomics strategy for the definition of BCa phenotype and recurrence risk including region of interest definition, radiomics feature extraction, tumor phenotype prediction and recurrence risk stratification. We particularly focus on current pitfalls, challenges and opportunities to promote massive clinical applications of radiomics pipeline in the near future.

18.
Schizophr Res ; 233: 89-96, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34246865

RESUMO

OBJECTIVE: The symptom-related neurobiology characteristic of schizophrenia in the brain from a network perspective is still poorly understood, leading to a lack of potential biologically-based markers and difficulty identifying therapeutic targets. We aim to test the dysregulated cross-network interactions among the Salience Network (SN), Central Executive Network (CEN) and Default Mode Network (DMN) and how they contributed to different symptoms in schizophrenia patients. METHODS: We examined network interactions among the SN, CEN and DMN in 76 patients with schizophrenia vs. 80 well-matched controls using dynamic causal modeling (DCM). We further analyzed the relation between network dynamics and Positive and Negative Syndrome Scale (PANSS). RESULTS: We observed that the DMN, CEN and SN across healthy controls and schizophrenia patients showed several similarities within or between-network pattern in the resting state. Comparing schizophrenia to controls, SN-centered cross-network interactions were most significantly reduced. Crucially, the strength of connections from CEN subnetwork 1 to DMN subnetwork 1 was positively correlated with the Positive Score of PANSS. The connection from the DMN subnetwork 2 to CEN subnetwork 2 was negatively correlated with the Negative Score of PANSS. CONCLUSIONS: Our study provides strong evidence for the dysregulation among SN, CEN and DMN in a triple-network perspective in schizophrenia. The connection between DMN and CEN could be clinically-relevant neurobiological signature of schizophrenia symptoms. Our study indicated that the description of brain triple network hypothesis could be a novel and possible bio-marker for schizophrenia.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
19.
Brain Imaging Behav ; 15(1): 147-156, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125618

RESUMO

Executive function is a complex involving multiple advanced brain functions like planning, working memory, mental flexibility and psychomotor. Previous researches indicated that executive function may be impaired after acute or chronic high-altitude exposure, while the underlying neurobiological mechanism has not been totally clarified. In the present study, based on 69 young healthy volunteers immigrating to high-altitude, Stroop test was utilized to identify the potential impairment of executive function after two-year high-altitude exposure while resting-state functional MRI (rs-fMRI) technology was employed to observe the alteration of resting-state networks. Stroop test indicated that the subjects experienced significantly lower accuracies and prolonged responding time after two-year exposure. Resting-state network analysis displayed a significantly decreased degree of co-activation within the left/right frontoparietal network, sensorimotor network, and auditory network after exposure. In the frontoparietal network, decreased co-activation intensity was found in left angular gyrus, while in the right frontoparietal network, decreased co-activation intensity was found in left precentral gyrus and postcentral gyrus. Similarly, as for sensorimotor and auditory network, left middle frontal gyrus and left superior temporal gyrus was identified to have decreased co-activation, respectively. Moreover, the responding delays in ST (part II) were negatively correlated with the signal intensity alteration of the right frontoparietal network. All these evidences indicated that the high-altitude exposure induced alteration in above resting state networks may be the functional basis of executive control impairment.


Assuntos
Altitude , Emigrantes e Imigrantes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal
20.
Brain Behav ; 10(10): e01656, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32909397

RESUMO

INTRODUCTION: High altitude (HA) exposure leads to cognitive impairment while the underlying mechanism is still unclear. Brain functional network is crucial for advanced functions, and its alteration is implicated in cognitive decline in multiple diseases. The aim of current study was to investigate the topological changes in HA-exposed brain functional network. METHODS: Based on Shaanxi-Tibet immigrant cohort, neuropsychological tests and resting-state functional MRI were applied to evaluate the participants' cognitive function and functional connection (FC) changes, respectively. GRETNA toolbox was used to construct the brain functional network. The gray matter was parcellated into 116 anatomically defined regions according to Automated Anatomical Labeling atlas. Subsequently, the mean time series for each of the 116 regions were extracted and computed for Pearson's correlation coefficients. The relation matrix was further processed and seen as brain functional network. Correlation between functional network changes and neuropsychological results was also examined. RESULTS: The cognitive performance was impaired by HA exposure as indicated by neuropsychological test. HA exposure led to alterations of degree centrality and nodal efficiency in multiple brain regions. Moreover, two subnetworks were extracted in which the FCs significantly decreased after exposure. In addition, the alterations in FCs within above two subnetworks were significantly correlated with changes of memory and reaction time. CONCLUSIONS: Our results suggest that HA exposure modulates the topological property of functional network and FCs of some important regions, which may impair the attention, perception, memory, motion ignition, and modulation processes, finally decreasing cognitive performance in neuropsychological tests.


Assuntos
Altitude , Encéfalo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...